Prezzo Kindle: EUR 74,59

Risparmia EUR 39,80 (35%)

include IVA (dove applicabile)

Queste promozioni verranno applicate al seguente articolo:

Alcune promozioni sono cumulabili; altre non possono essere unite con ulteriori promozioni. Per maggiori dettagli, vai ai Termini & Condizioni delle specifiche promozioni.

Invia a Kindle o a un altro dispositivo

Invia a Kindle o a un altro dispositivo

Bioconductor Case Studies (Use R!) di [Hahne, Florian]

Bioconductor Case Studies (Use R!) [Print Replica] Formato Kindle


Visualizza tutti i 5 formati e le edizioni Nascondi altri formati ed edizioni
Prezzo Amazon
Nuovo a partire da Usato da
Formato Kindle
EUR 74,59

Amazon Original Books a 0,99€ l’uno
Questa offerta speciale è valida fino al 31 luglio 2018: affrettati e trova il tuo prossimo eBook a prescindere che tu sia un appassionato di Giallo, Rosa, Thriller o altro genere Clicca qui

Descrizione prodotto

Recensione

From the reviews:

"This work has extended R substantially and is an important tool for research. … All the code, including solutions to the exercises, is available for downloading on the Web and-this is well worth mentioning-it runs straight out of the box…. The book describes various analysis, provides the code for them and discusses the output. This makes for an easy read and anyone who works through the book will gain confidence that they can carry out analysis on their own data. The discussion of analysis is generally sound and practical. In particular the interpretation of the results of clustering is more sensible then you often see…. This book is strongly recommended for learning more about Bioconductor." (Antony Unwin, Journal of Statistical Software, January 2009, Volume 29, Book Review 1).

"The readership of this book will be specialized but the text deserves to be read more widely within the statistics and computer science communities as there is much to interest the inquiring mind. … Exercises for private study and their solutions are provided as an integral part of the text. "(C.M. O’Brien, International Statistical Review, 2009, 77, 1)

“One of the great advantages of the R language is its dynamic nature, where code and other resources are continuously generated in order to address novel analytical challenges. Microarray gene expression data present such a challenge, and the Bioconductor project has risen over the years to become the foremost central repository of R-implemented approaches for such data. However, while individual packages within Bioconductor are usually well documented, it is often hard to know which packages to use in what circumstances, especially when tools from several packages are best used in concert. This text aims to fill that void by offering a collection of case studies derived from the authors’ own Bioconductor courses, covering the topics of processing raw intensities; correcting for background noise and variation across chips; differential expression analysis; machine learning for clustering and classification; graph creation; and gene set enrichment. …All in all, this text is an excellent, well-written reference for many of the common tasks that arise during the analysis of microarray gene expression datasets, as implemented by Bioconductor. It is well worth the modest sum required for its purchase.” (The American Statistician, May 2010, Vol. 64, No. 2)

Sinossi

Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include: (1) import and preprocessing of data from various sources; (2) statistical modeling of differential gene expression; (3) biological metadata; (4) application of graphs and graph rendering; (5) machine learning for clustering and classification problems; (6) gene set enrichment analysis.Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table.

Dettagli prodotto

  • Formato: Formato Kindle
  • Dimensioni file: 17168 KB
  • Lunghezza stampa: 284
  • Editore: Springer; 2008 edizione (11 aprile 2013)
  • Venduto da: Amazon Media EU S.à r.l.
  • Lingua: Inglese
  • ASIN: B00DGEQOFC
  • Da testo a voce: Non abilitato
  • X-Ray:
  • Word Wise: Non abilitato
  • Miglioramenti tipografici: Non abilitato
  • Media recensioni: Recensisci per primo questo articolo
  • Hai trovato questo prodotto a un prezzo più basso?


Recensioni clienti

Non sono ancora presenti recensioni clienti.
Condividi i tuoi pensieri con altri clienti

Le recensioni clienti più utili su Amazon.com

Amazon.com: 2,0 su 5 stelle 1 recensioni
Quanticus
2,0 su 5 stelleAwful book, period!
14 dicembre 2012 - Pubblicato su Amazon.com
Acquisto verificato
7 persone l'hanno trovato utile.
click to open popover

Dove è il mio ordine?

Spedizioni e resi

Hai bisogno di aiuto?